Forskolin stimulation promotes urea transporter UT-A1 ubiquitination, endocytosis, and degradation in MDCK cells.
نویسندگان
چکیده
The adenylyl cyclase stimulator forskolin (FSK) stimulates UT-A1 phosphorylation, membrane trafficking, and urea transport activity. Here, we found that FSK stimulation induces UT-A1 ubiquitination in UT-A1 Madin-Darby canine kidney (MDCK) cells. This suggests that phosphorylation by FSK also triggers the protein degradation machinery for UT-A1. UT-A1-MDCK cells were treated with 100 μg/ml cycloheximide to inhibit protein synthesis, with or without 10 μM FSK. Total UT-A1 protein abundance was significantly reduced after FSK treatment, concomitantly ubiquitinated UT-A1 was increased. We then specifically investigated the effect of FSK on UT-A1 expressed on the cell plasma membrane. FSK treatment accelerated UT-A1 removal from the cell plasma membrane by increasing UT-A1 endocytosis as judged by biotinylation/MesNa treatment and confocal microscopy. We further found that inhibition of the clathrin-mediated endocytic pathway, but not the caveolin-mediated endocytic pathway, significantly blocks FSK-stimulated UT-A1 endocytosis. The PKA inhibitor H89 and the proteasome inhibitors MG132 and lactacystin reduced FSK-induced membrane UT-A1 reduction. Our study shows that FSK activates the UT-A1 urea transporter and the activation/phosphorylation subsequently triggers the downregulation of UT-A1, which represents an important mechanism for the cell to return to the basal conditions after vasopressin stimulation.
منابع مشابه
Activation of the cAMP/PKA pathway induces UT-A1 urea transporter monoubiquitination and targets it for lysosomal degradation.
Regulation of urea transporter UT-A1 in the kidney is important for the urinary concentrating mechanism. We previously reported that activation of the cAMP/PKA pathway by forskolin (FSK) leads to UT-A1 ubiquitination, endocytosis, and degradation. In this study, we discovered that FSK-induced UT-A1 ubiquitination is monoubiquitination as judged by immunoblotting with specific ubiquitin antibodi...
متن کاملDepolymerization of cortical actin inhibits UT-A1 urea transporter endocytosis but promotes forskolin-stimulated membrane trafficking.
The cytoskeleton participates in many aspects of transporter protein regulation. In this study, by using yeast two-hybrid screening, we identified the cytoskeletal protein actin as a binding partner with the UT-A1 urea transporter. This suggests that actin plays a role in regulating UT-A1 activity. Actin specifically binds to the carboxyl terminus of UT-A1. A serial mutation study shows that ac...
متن کاملUrea transport in MDCK cells that are stably transfected with UT-A1.
Progress in understanding the cell biology of urea transporter proteins has been hampered by the lack of an appropriate cell culture system. The goal of this study was to create a polarized epithelial cell line that stably expresses the largest of the rat renal urea transporter UT-A isoforms, UT-A1. The gene for UT-A1 was cloned into pcDNA5/FRT and transfected into Madin-Darby canine kidney (MD...
متن کاملVasopressin increases plasma membrane accumulation of urea transporter UT-A1 in rat inner medullary collecting ducts.
Urea transport, mediated by the urea transporter A1 (UT-A1) and/or UT-A3, is important for the production of concentrated urine. Vasopressin rapidly increases urea transport in rat terminal inner medullary collecting ducts (IMCD). A previous study showed that one mechanism for rapid regulation of urea transport is a vasopressin-induced increase in UT-A1 phosphorylation. This study tests whether...
متن کاملUrea flux across MDCK-mUT-A2 monolayers is acutely sensitive to AVP, cAMP, and [Ca2+]i.
In this study, we engineered a Madin-Darby canine kidney (MDCK) type I cell line to stably express the mouse urea transporter UT-A2. Monolayers of MDCK-mUT-A2 cells had a basal phloretin-inhibitable urea permeability of 8.4x10(-6)+/-0.3 cm/s. Treatment of MDCK-mUT-A2 monolayers with AVP led to a rapid dose-dependent increase in trans-monolayer phloretin-inhibitable urea flux. The temporal patte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 303 9 شماره
صفحات -
تاریخ انتشار 2012